| CAL Document Change Notification | | | | DCN No.
7650-DCN-0066-01 | | | | |---|---------------|--------------|------------|------------------------------------|--------------|---------------|----------------| | CHANGE TITLE: Cde Acceptance Plan Clarification | | | | ⊠ Internal □ | External | | | | ORIGINATOR: J. E | Fric Grove | | | DATE: | 25-Jun-04 | NEXT ASSY: | | | DOC or DWG NUM | BER | | | TITLE | | AFFECTED REV. | NEW REV. | | LAT-SS-02235 | i | | Cde | Acceptance Tes | st Plan | 05 | 06 | CHANGE DESCRIPTIO 1. Clarified reportin 2. Modified inspec | ng of inspec | - | | mline process. | | | | | 3. Made dimension | ns in checkli | st consisten | t with CDE | drawing, LAT | -DS-1900-06. | | | | | | | | | | | | | REASON FOR CHANGE: These changes were made to speed the inspection process by clarifying what is to be measured and what is to be visually checked. In addition, the inspection checklist reduces the paperwork burden by eliminating the need for individual datasheets for each CDE. | | | | | | | | | DISPOSITION OF HARDWARE: | | | | | | | | | ☐ No hardware affec | ted | | | | | | | | Serial numbers aff | | | | 1 | | | ate: 25-Jun-04 | | Raw material | Use as is | Retest | Rework | Scrap | | Other/Comment | | | Parts in process | | | | | | | | | Assemblies | | | | | | | | | APPROVALS DATE OTHER APPROVALS (specify): DATE | | | | | DATE | | | | ORIGINATOR: J. Eric Grove | | | | 25-Jun-04 | : | | | | SUBSYSTEM MANAGER: W.N. Johnson | | | | 25-Jun-04 | : | | | | PROJECT MANAGER: | W.C. | Raynor | | 25-Jun-04 | : | | | | QUAL ASSUR. MANAGER: N. Virmani | | | | 25-Jun-04 | : | | | | CONFIGURED AND RELEASED: P. Sandora | | | | 29-Jun-04 | | | | Form LAT-FS-02965-01 Page 1 GLAST LAT SUBSYSTEM SPECIFICATION | Document # | Date Effective | | | |-----------------------|----------------|--|--| | LAT-SS-02235-06 | 25 June 2004 | | | | Prepared by(s) | Supersedes | | | | J. Eric Grove | None | | | | Nick Virmani | | | | | Subsystem/Office | | | | | Calorimeter Subsystem | | | | Document Title **CAL FM Crystal Detector Element Acceptance Test Plan** # Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) Calorimeter Flight Model Crystal Detector Element Acceptance Test Plan CAL Subsystem Manager # **DOCUMENT APPROVAL** | Prepared by: | | |---|--------------| | J. Eric Grove | 25 June 2004 | | J. Litte Grove | 23 June 2004 | | J. Eric Grove
CAL Subsystem Instrument Scientist | Date | | Nick Virmani | 25 June 2004 | | Nick Virmani
CAL Subsystem Quality Assurance Manager | Date | | | | | Approved by: | | | W. Neil Johnson | 25 June 2004 | | W. Neil Johnson | Date | # **CHANGE HISTORY LOG** | Revision | Effective Date | Description of Changes | | |----------|-----------------------|------------------------------------------------------------------|--| | 03 | 28 October 2003 | Initial Release | | | 04 | 9 January 2004 | Revised big diode light yield spec; | | | | | Revised contents of optical test summary table (.csv file) to be | | | | | consistent with output of analysis software | | | 05 | 20 April 2004 | Revised inspection for not-fully-cured bond; | | | | | Revised inspection for seam tape length; | | | | | Revised maximum bondline thickness; | | | | | Clarified reporting of inspections and problems; | | | | | Added inspection checklist | | | 06 | 25 June 2004 | Revised dimensions to be consistent with LAT-DS-1900-06 | | | | | Revised inspection checklist | | | | | | | | | | | | | | | | | # **Table of Contents** | 1 | INTR | ODUCTION | 6 | |---|-------|----------------------------------|----| | | 1.1 P | URPOSE | 6 | | | 1.2 S | COPE | 6 | | | 1.3 A | APPLICABLE DOCUMENTS | 6 | | | | DEFINITIONS AND ACRONYMS | | | | 1.4.1 | Acronyms | 6 | | | 1.4.2 | Definitions | 7 | | 2 | INTR | ODUCTION | | | | 2.1 F | M CDE Components | 8 | | | 2.2 T | raceability | 8 | | 3 | CDE A | ACCEPTANCE TESTS | 10 | | | 3.1 V | isual Inspection | 10 | | | 3.1.1 | Requirements | 10 | | | 3.1.2 | Test Location | 11 | | | 3.1.3 | Reporting | 11 | | | 3.2 N | Mechanical | 11 | | | 3.2.1 | Requirements | 11 | | | 3.2.2 | Test Location | 12 | | | 3.2.3 | Reporting | 12 | | | 3.3 C | Optical | 12 | | | 3.3.1 | Requirements | 12 | | | 3.3.2 | Test Location | 12 | | | 3.3.3 | Reporting | 12 | | | 3.4 B | Sond Strength | 13 | | | 3.4.1 | Requirement | 13 | | | 3.4.2 | Test Location | 13 | | | 3.4.3 | Reporting | 13 | | | 3.5 T | hermal stability | 13 | | | 3.5.1 | Requirements | 13 | | | 3.5.2 | Test Location | 13 | | | 3.5.3 | Reporting | 13 | | 4 | ACCF | EPTANCE DATA PACKAGE | 14 | | | 4.1 R | Leporting | 14 | | | 4.1.1 | Contents of Tracking Spreadsheet | 14 | | | 4.1.2 | Contents of Optical Test Report | 14 | | | 4.2 C | Certificate of Conformance | 15 | | 5 | APPE | NDIX A: INSPECTION DATA RECORD | 16 | # **List of Figures** | Figure 1: Crystal Detector Element assembly. Note that the CDE is depicted with its "top" surface – with the seam-sealing tape – down. The seal tape is therefore not shown. The CDE assembly drawing is LAT-DS-01900 | | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----| | List of Tables | | | Table 3-1. Dimensional requirements for completed CDEs. | 11 | | Table 3-2. Optical performance requirements. | | | Table 4-1: Contents of CDE Tracking Spreadsheet | 14 | | Table 4-2. Contents of CDE optical test summary table. The table is generated by the | | | optical test analysis software. | 15 | # 1 INTRODUCTION # 1.1 PURPOSE This document defines the acceptance test plan and requirements for Flight Model (FM) Calorimeter (CAL) Crystal Detector Elements (CDEs) assembled at Swales Aerospace. Elements of these acceptance tests will be performed at both Swales and NRL, as appropriate, as indicated herein. CDEs will be assembled using certified tooling and fixtures by certified personnel according to released procedures related to manufacturing and inspection. The quality of CDEs is highly dependent on the process controls during manufacturing and on certification of the processes. ### 1.2 SCOPE We describe the complete set of tests to be performed on FM CDEs at Swales and NRL. These acceptance tests ensure that CDEs assembled at meet the relevant requirements identified in the CAL FM Crystal Detector Element Specification (LAT-SS-01133). ### 1.3 APPLICABLE DOCUMENTS The following documents are applicable to the extent specified within. Unless otherwise indicated, the latest issue in effect shall apply. In the event of a conflict between these documents and the contents of this document, those contained herein shall be considered the superseding requirement. | GE-00010 | GLAST LAT Performance Specification | |--------------|-----------------------------------------------------------------------| | LAT-SS-00010 | LAT Performance Specification – Level II (b) Specification | | LAT-SS-00018 | LAT CAL Subsystem Specification - Level III Specification | | LAT-SS-00210 | LAT CAL Subsystem Specification – Level IV Specification | | LAT-SS-00601 | LAT Calorimeter Structure to CDE Interface Control Document | | LAT-TD-00381 | LAT Calorimeter CDE Light Yield Calibration Procedure | | LAT-PS-00809 | LAT Calorimeter CsI Crystal Handling and Shipping Procedure | | LAT-DS-00820 | LAT Calorimeter CsI Crystal Performance Specification | | LAT-DS-00209 | LAT Calorimeter Flight Dual PIN Photodiode Specification | | LAT-PS-01330 | Calorimeter Flight Photodiode Assembly Soldering & Staking Process | | | Specification | | LAT-PS-01534 | Calorimeter Flight Model Photodiode Assembly Specification | | LAT-PS-01331 | Calorimeter Flight Crystal to PDA Bonding Process Specification | | LAT-PS-01332 | Calorimeter Flight Crystal Wrapping and Capping Process Specification | | LAT-SS-01133 | Calorimeter Flight Crystal Detector Element Specification | | LAT-DS-01900 | Crystal Detector Element Assembly Drawing | | LAT-MD-00228 | Calorimeter, Tracker, and Data Acquisition Contamination Control Plan | | LAT-PS-02571 | CAL Crystal Detector Element Optical Test Procedure | | LAT-PS-02572 | Process Specification for the Bond Strength Testing of the CDE | # 1.4 DEFINITIONS AND ACRONYMS # 1.4.1 Acronyms | CAL | Calorimeter Subsystem of the LAT | |-------|--------------------------------------| | CDE | Crystal Detector Element | | DPD | Dual PIN photoDiode | | GLAST | Gamma-Ray Large Area Space Telescope | | LAT | Large Area Telescope | | NCR | Non-Conformance Report | | PDA | PhotoDiode Assembly | | TBD | To Be Determined | | TBR | To Be Resolved | | | | # 1.4.2 Definitions Analysis A quantitative evaluation of a complete system and/or subsystems by review/analysis of collected data Demonstration To prove or show, usually without measurements of instrumentation, that the project/product complies with requirements by observation of the results. Inspection To examine visually or use simple physical measurement techniques to verify conformance to specified requirements. Simulation To examine through model analysis or modeling techniques to verify conformance to specified requirements Testing A measurement to prove or show, usually with precision measurement or instrumentation, that the product complies with requirements. Validation Process used to assure the requirement set is complete and consistent, and that each requirement is achievable. Verification Process used to ensure that the selected solutions meet specified requirements and properly integrate with interfacing products μm Micrometer mm Millimeter # 2 INTRODUCTION # 2.1 FM CDE COMPONENTS The Flight CDE assembly consists of the following components. These are depicted in Figure 1. The CDE assembly drawing is LAT-DS-01900. - One FM CsI(Tl) scintillating crystal, which is a rectangular parallelepiped with a chamfer on the corners of the long dimension, as defined in LAT-DS-00820. - Two FM Photodiode Assemblies (PDAs), one bonded to each end of the CsI crystal. As defined in LAT-PS-01534, each PDA consists of: - o One Dual PIN photoDiode (DPD) as defined in LAT-DS-00209, and - o Two sets of interconnect wire pairs attached to the leads of the DPD. - Two optical bonds attaching the PDA assemblies, one to each CsI crystal end using a DC93-500 silicone optical adhesive in accordance with LAT-PS-01331. - One VM2000 Optical Reflective Wrap sealed with acrylic-adhesive Kapton tape applied in accordance with LAT-PS-01332. - Two Machined End Caps attached over bonded PDAs and optical reflective wrap at both ends of the crystal to close out the ends of the CDE in accordance with LAT-PS-01332. - One label indicating crystal serial number and orientation as defined in the FM CDE Specification (LAT-SS-01133). Figure 1: Crystal Detector Element assembly. Note that the CDE is depicted with its "top" surface – with the seam-sealing tape – down. The seal tape is therefore not shown. The CDE assembly drawing is LAT-DS-01900. ### 2.2 TRACEABILITY The CsI(Tl) crystal and the photodiodes are individually serialized by the manufacturers in the manner indicated in their respective specification documents. CsI cystals and PDAs, which are tested and verified by NRL, will be supplied as customer furnished parts with complete traceability details. Full traceability of these same serial numbers shall be maintained throughout the entire process of CDE assembly. The DC93-500 silicone encapsulant and DC92-023 primer are identified by batch numbers and subject to an expiration date. A single batch is a sufficient quantity to make many optical bonds. Batch number and expiration date shall be traceable for all flight CDEs and shall be recorded on the Swales work orders. After verification at receiving inspection at Swales, no further verification of paperwork is required during the CDE assembly as long as the expiration date has not passed and the samples made from the bonding mix of DC 93-500 and DC 92-023 have met the hardness requirement. The VM2000 wrapper supplied by NRL is identified by the lot and roll number of its parent roll. One roll is sufficient to make hundreds of wrappers. No further identification of wrapper within its lot and roll need be given. Wrapper lot number and roll number shall be traceable for all flight CDEs and shall be recorded. The end caps supplied by NRL are identified by lot number. One lot of end caps is sufficient for a few tens of CDEs. End cap lot number shall be traceable for all flight CDEs. Each assembled CDE shall be serialized by its unique crystal serial number and must match with the original number on the crystal. One "lot" of CDEs shall be comprised of the 12 CDEs assembled on a single bonding workstand segment. If fewer than 12 CDEs are bonded in a given session, only those CDEs that are bonded in a given session at a single workstand segment can be considered as a lot. The type of bonding operation used during CDE assembly is not defined in any of the NASA standards, hence there is no requirement for technicians or manufacturing personnel to obtain certification from NASA. Since this is a specialized bonding operation, Swales manufacturing and inspection personnel must be certified to internal training and bonding procedures and inspection criteria. Full traceability of the serial numbers, batch numbers, and lot numbers specified above shall be maintained. The bonding and wrapping log shall document the serial, batch, and lot numbers of the components that comprise each assembled CDE. # 3 CDE ACCEPTANCE TESTS The acceptance tests indicated here shall be performed on individual FM CDEs in process or following their assembly, as appropriate and as indicated below. These tests shall be performed at Swales Aerospace or NRL, as herein and in Appendix A. Tests are listed below and in Appendix A by type. In each section, the test requirements, location of test, and method of reporting are listed following a brief description. ### 3.1 VISUAL INSPECTION Each CDE shall be subject to in-process and final visual inspection, as listed here and within the PDA bonding process specification (LAT-PS-01331) and the wrapping and capping process specification. # 3.1.1 Requirements # [FIX THIS NICKISM] As specified in the PDA bonding procedure (LAT-PS-01331), each PDA optical bond shall be inspected for evidence of delamination, or other significant flaws on the bond edge. This in-process inspection shall be performed by manufacturing personnel as the bond is released from its mold, or by manufacturing personnel and/or the quality engineer within 7 days after it is injected. This inspection may be performed with no magnification or handheld magnification up to x10. Failure to cure, obvious delaminations, presence of 4 or more visible voids, or voids larger than 2 mm shall be grounds for rejection. Any area of less-than-fully cured bond material along the bond edge that extends over 3 mm shall be cause for rejection of the CDE. Multiple, smaller areas of less-than-fully cured bond material shall be permitted. CDEs from the same lot as those with less-than-fully cured material that pass all other visual, mechanical, and optical inspections – and whose mixing lot sample has cured with the acceptable hardness – shall be deemed acceptable, and shall not be rejected. As specified in the CDE wrapping and capping procedure (LAT-PS-01332), prior to wrapping, each CDE shall be inspected for significant damage to the crystal volume, chamfers, and bonding faces. This inspection shall be performed with no magnification. Cracks anywhere in the crystal longer than 5 mm and shattered areas or chips on the bonding face larger than 5 mm shall be grounds for rejection. Cracking, chipping, or shattering damage to the chamfer that extends over more than 20 mm shall be grounds for rejection. As specified in the CDE wrapping and capping procedure (LAT-PS-01332), after wrapping and capping, each CDE shall be visually inspected as specified in Appendix A for proper VM2000 wrapper alignment and tightness, wrapper seam sealing tape length, machined end cap tape placement, and end cap seating. These requirements are summarized here and in Appendix A. Inspection shall be performed according to the checklist in Appendix A, with one checklist corresponding to one lot of 12 CDEs. - The wrapper shall lap over itself on the top face of the crystal, and the overlapped portion of the wrapper shall not be skewed out of alignment visually by 0.7 mm approximately at either end. - So that the wrapper does not interfere with the placement of the machined end cap, neither end of the wrapper shall extend past the end of the crystal. - The wrapper seam on the top face of the crystal shall be covered with a strip of 12.7 mm wide Kapton tape. Kapton tape shall have an acrylic adhesive and not a silicone adhesive. The tape length shall be such that it does not extend beneath the flange of either end cap, but its ends are covered by end-cap mounting tape. - The wrapper shall be tight after both ends caps are taped in place. - The end-cap mounting tape shall not extend onto the chamfers of the end cap. This tape shall cover only the lip of the end cap. - Both end caps shall be firmly seated onto the crystal end faces such that they do not move when modest finger pressure is applied axially to a corner of the end cap. Prior to shipping to NRL, each completed CDE lot shall be inspected for quantity and condition. ### 3.1.2 Test Location This test shall be performed at Swales. It may be repeated on receipt of CDEs at NRL depending on the review of the test data and trends. # 3.1.3 Reporting The date and status of each visual inspection shall be reported on the CDE Traveler. Only CDEs that pass the requirements as shown in appendix A shall be sent to NRL. Through an NCR, Swales shall notify NRL of crystals with defects that exceed the requirements for rejection, bonds not meeting the requirements as specified herein, and tooling or process issues leading to a process or manufacturing change. Notification shall occur within 24 hours. NRL will review each NCR and make a disposition on a case-by-case basis. Any anomalies found on the customer-supplied material or tooling shall be communicated via email through the Swales project office. All tooling changes require recertification of the processes, and the impact of the tooling change must be analyzed prior to certification for flight production. ### 3.2 MECHANICAL Each CDE shall have overall dimensions (including bonded PDAs and Optical Reflective Wrap) not to exceed the bounds given in Table 3-1. These critical dimensions are specified in LAT-SS-01133 and repeated in the CDE Assembly Drawing (LAT-DS-01900). The specified dimensions of each CDE shall be inspected with approved gauges and calibrated equipment. The maximum allowable mass of each CDE is 0.80 kg. Each CDE shall be weighed with precision and accuracy not to exceed 1 gram. The mass shall be recorded as shown in Appendix A. # 3.2.1 Requirements Dimensional and weight requirements are given in the CAL Flight Model Crystal Detector Element Specification, LAT-SS-01133. The subset of those dimensions to be tested is given in Table 3-1 and is called out in the CDE Assembly Drawing (LAT-DS-1900). The "CDE Total Length" is defined as the distance between the ends of the DPD pin contacts on opposite faces of the crystal, not including the extent of the interconnect wire pairs. The "CDE Cap-to-Cap Length" is defined as the distance between the outer faces of opposite end caps. The "CDE Envelope Height" is defined to be the maximum distance between two planes in contact with the Top and Bottom surfaces of the CDE. The "CDE Envelope Width" is defined to be maximum distance between two planes in contact with the Front and Rear surfaces of the CDE. On a nominal CDE, test planes in contact with the Top, Bottom, Front, and Rear surfaces of the CDE would be in contact with the machined end caps. The bondline thickness and PDA location on the end faces shall be verified with approved gauges and calibrated equipment. The minimum and maximum values of the indicated dimensions shall be inspected with approved gauges and calibrated equipment manufactured with tolerances of ± 0.1 mm or better. | Parameter | Minimum | Maximum | |-----------------------|------------|------------| | | Value (mm) | Value (mm) | | CDE Total Length | NA | 336.3 | | CDE Cap-to-Cap Length | 330.8 | 331.6 | | CDE Envelope Height | NA | 20.4 | | CDE Envelope Width | NA | 27.2 | | Bondline thickness | 0.8 | 1.1 | | PDA Height Location | 2.40 | 3.40 | | PDA Width Location | 2.15 | 3.15 | | Wrapper Skewness | NA | 0.7 | Table 3-1. Dimensional requirements for completed CDEs. The mass of each CDE, including CsI crystal, DPDs, optical bonds, interconnect wire pairs, optical reflective wrap, and machined end caps, shall not exceed 0.80 kg (LAT-SS-01133). The measurement precision and accuracy shall not exceed 1 gram. # 3.2.2 Test Location This test shall be performed at Swales. # 3.2.3 Reporting The date and status of the dimensional tests and weight measurements shall be reported on the CDE work order. The weight measurement shall also be reported on the CDE Tracking Spreadsheet. Only CDEs that pass the mechanical inspections shall be sent to NRL. ### 3.3 OPTICAL The optical performance of each CDE shall be quantified with the CDE Muon Telescope supplied by NRL, the design and use of which is described in LAT-PS-02571. This device records the scintillation light produced by the passage of cosmic ray muons and measured by all four PIN photodiodes of a CDE. The optical properties of 12 CDEs can be measured with the requisite accuracy in a single data run of ~12 hrs. The CDE Muon Telescope will report the following parameters. - The absolute light yield of all four diodes measured at the center of the CDE. - The large-to-small diode light yield ratio, PIN B / PIN A for each PDA, and the end-to-end light yield ratio for the large diode, PIN B(plus) / PIN B(minus), measured at the center of the CDE. - The energy resolution of both large diodes for muons at the center of the CDE. - The light asymmetry from the large diodes for muons approximately 12 cm on either side of the center of the CDE. # 3.3.1 Requirements Optical performance requirements are given in the CAL Flight Model Crystal Detector Element Specification, LAT-SS-01133, in which these parameters are defined in some detail. Table 3-2 lists the optical requirements to be tested and the respective maximum and minimum values, as appropriate. | Parameter | Minimum
Value | Maximum
Value | |---|------------------|------------------| | Light yield, large PIN (e/MeV) | 6000 | NA | | Light yield, small PIN (e/MeV) | 1100 | NA | | Light yield ratio | 5 | 7 | | Light asymmetry change | 0.25 | 0.70 | | End-to-end light yield ratio, large PIN | 0.87 | 1.15 | | Muon energy resolution (rms) | NA | 8% | Table 3-2. Optical performance requirements. Similar tests have been performed successfully on EM CDEs. ### 3.3.2 Test Location This test shall be performed by trained personnel at Swales using the CDE Muon Telescope, which is GFE from NRL. NRL will provide training in the use of the Muon Telescope. # 3.3.3 Reporting The CDE Muon Telescope analysis software generates a test report that contains the CDE serial number, the date and test technician's name, and the optical performance values. Optical test reports shall be forwarded to NRL along with the CDE shipments. Only CDEs that meet the optical requirements shall be sent to NRL. CDEs that fail will be shipped to NRL for rework or repair as necessary via a Swales NCR. Such rework or repair will be conducted under an NCR. There shall be one single NCR for the failed CDEs per shipment to NRL. After rework or repair, the CDEs will be supplied to Swales with the original Swales NCR and an NRL work order detailing the work performed. ### 3.4 BOND STRENGTH One CDE every two weeks of assembly shall be chosen at random and set aside for shear strength testing to destruction. Both PDAs shall be sheared off the crystal using a calibrated load cell, and the PDA displacement and shear-loading data shall be recorded electronically. The shearing load shall be applied uniformly over the full $21 \text{ mm} \times 1.8 \text{ mm}$ side surface of the PDA ceramic. The test shall be monitored and witnessed by QA. The shear strength test procedure is given in LAT-PS-02572. After the shear test, the crystal and sheared PDAs shall be visually inspected and then delivered to NRL with the test report. The crystal may be returned to Swales for reuse. # 3.4.1 Requirement The shear strength of the PDA bond shall exceed 0.16 N/mm^2 . For the area of the FM optical bond (20.2 mm \times 12.4 mm), this corresponds to a shear force of approximately 40 N. For the purpose of this test, this 40 N value shall be defined to be 9 lbf. Similar tests have been performed on EM CDEs without failures. ### 3.4.2 Test Location This test shall be performed by Swales personnel at NRL or at Swales, according to convenience. # 3.4.3 Reporting The date, displacement at failure, shear strength at failure, and status of the tests shall be recorded and reported to NRL. Swales shall store the detailed data set of displacement versus shear load electronically, for delivery to NRL on request. ### 3.5 THERMAL STABILITY One CDE randomly selected from every two weeks of assembly shall be set aside for thermal stability testing. The optical performance of this CDE (Section 3.3) will be evaluated through 25 thermal cycles at atmospheric pressure in a dry nitrogen purge. The temperature range shall be –30C to +60C, with a ramp rate not to exceed 20C per hour and a soak time of not less than 1 hour. Optical performance measurements shall be made prior to cycling and after 25 cycles. Following the thermal cycling, the machined end caps shall be removed and the PDA bond shall be visually inspected for delamination. This sample CDE may be the same CDE selected for shear strength testing. In this case, the shear test would occur following thermal cycling. Because this delays the shear test by of order two weeks, we anticipate that the thermal stability test sample and the shear strength test sample will not be the same CDE early in the flight build. # 3.5.1 Requirements The light yield of each of the four PIN photodiodes shall not decline by more than 20% after thermal cycling relative to its initial value. There shall be no noticeable physical delamination of either optical bond. Similar tests have been performed on EM CDEs without failures. Light yields typically decline by \sim 5% from their initial values. ### 3.5.2 Test Location The thermal cycling shall be performed at NRL, and the muon optical tests will be performed at Swales. # 3.5.3 Reporting The date, number of thermal cycles, optical performance parameters, and visual inspection shall be reported to NRL. (Environmental records of the thermal cycling shall be reported by NRL to Swales along with the CDE when it is returned to Swales for the post-cycling optical test.) # 4 ACCEPTANCE DATA PACKAGE # 4.1 REPORTING CDEs are assembled in lots of 12. Each lot has associated with it a Swales Traveler that documents the assembly steps and the components used in the assembly. All Travelers shall be reviewed by the Swales quality engineer for verification that all operations were completed and that any NCRs are closed or dispositioned. The Traveler shall be made available for review by NRL. Each CDE has a Swales serial number that is [Traveler Number]-[Sequence number], where the Sequence number (1 to 12) is the ordinal number for the bonding sequence within a lot. Data elements specified in this document shall be reported to NRL in the CDE Tracking Spreadsheet and in the Optical Test Report. The contents of the spreadsheets are specified below. One worksheet within the spreadsheet shall be created for each CDE lot. It shall be transmitted from Swales to NRL via email or on CD with each CDE lot shipment. The spreadsheet shall be created with Microsoft Excel, Office version 2000 or higher. In addition to the Optical Test Report spreadsheet, the muon optical test also creates an HTML report and data summary plots in PDF format. The optical test data file, HTML report, and data summary plots shall be made available to NRL on request. They may be communicated electronically via email or CD, or may be shipped with the CDEs as appropriate. # 4.1.1 Contents of Tracking Spreadsheet The CDE Tracking Spreadsheet shall contain the serial, batch, and lot numbers of the components of each CDE to establish traceability. In addition, it shall contain the measured mass of the completed CDE and the date of completion of assembly. The completion date may be used to track original and reworked CDEs. The columns of the spreadsheet are listed in Table 4-2. One row of the spreadsheet shall correspond with one CDE. | Column number | Column heading | Description | |---------------|-------------------------|---| | 1 | Crystal S/N | Vendor-supplied serial number | | 2 | Left (minus) PDA S/N | Vendor-supplied serial number, left face | | 3 | Right (plus) PDA S/N | Vendor-supplied serial number, right face | | 4 | Wrapper L/N | Vendor-supplied lot number | | 5 | Left (Minus) cap L/N | Vendor-supplied lot number, left face | | 6 | Right (Plus) cap L/N | Vendor-supplied lot number, right face | | 7 | Mass (grams) | Weight of completed CDE, in grams. | | 8 | Swales serial number | Swales serial number for assembled CDE | | 9 | Completion date | Date of completion of assembly of CDE | | 10 | Is Left bond reworked? | | | 11 | Is Right bond reworked? | | Table 4-1: Contents of CDE Tracking Spreadsheet # 4.1.2 Contents of Optical Test Report The CDE Muon Telescope analysis software generates a test report in HTML and a comma-separated-value summary table. The test report lists the final pass/fail status of each CDE in regard to its compliance with the optical performance requirements. The summary table contains the essential numerical test values for each CDE, as shown in Table 4-2. One row of the table corresponds to one CDE. | Column number | Column heading | Description | |---------------|---|--| | 1 | Crystal S/N | Vendor-supplied serial number | | 2 | Test date | Date of optical test | | 3 | Operator | Name of test technician | | 4 | Data file name | Name of optical test data file from which performance data are derived | | 5 | Light yield, large PIN,
Minus face (e/MeV) | | | 6 | Light yield, small PIN,
Minus face (e/MeV) | | | 7 | Light yield ratio, large / small,
Minus face | | | 9 | Light yield, large PIN,
Plus face (e/MeV) | | | 10 | Light yield, small PIN,
Plus face (e/MeV) | | | 11 | Light yield ratio, large / small,
Plus face | | | 13 | End-to-end light yield ratio | | | 14 | Light asymmetry change | | | 15 | Muon resolution (% rms) | | Table 4-2. Contents of CDE optical test summary table. The table is generated by the optical test analysis software. # 4.2 CERTIFICATE OF CONFORMANCE Each shipment shall be accompanied by a certificate of conformance with the specified assembly and test procedures. This certification shall be signed by the CDE Project Manager at Swales or his/her designee. # 5 APPENDIX A: INSPECTION DATA RECORD The inspection data record is shown on the following page. One record shall correspond to one build lot of 12 CDEs. ### **CDE INSPECTION DATA RECORD** # **SWALES TRAVELER NUMBER:** SEQUENCE NUMBERS: MASS (KG) | -01: | -05: | -09: | |------|------|------| | -02: | -06: | -10: | | -03: | -07: | -11: | | -04: | -08: | -12: | # PRIOR TO INSPECTION | Description | Source | Requirement | Acceptance | QA/Date | |-------------------|--------|------------------------------|-------------|---------| | Adhesive Hardness | | Shore A 35 to 55 per mix lot | Measurement | | # PRE WRAPPING INSPECTION | Description | Source | Requirement | Acceptance | QA/Date | |--|--------------|---------------------------------------|------------------|---------| | Verify Serialization /
Traceability Log | LAT-SS-02235 | Section 2.2 & 3.1 | Go / No-go Gauge | | | Overall Length | LAT-DS-01900 | 336.3 mm maximum
(13.240" maximum) | Go / No-go Gauge | | | Bondline Thickness | LAT-DS-01900 | 1.1 mm maximum
(.043" maximum) | Go / No-go Gauge | | | Visual Inspection | LAT-SS-02235 | Section 3.1 | Go / No-go Gauge | | ### POST WRAPPING INSPECTION | Description | Source | Requirement | Acceptance | QA/Date | |-----------------------------|--------------|---|-------------------|---------| | Identification | LAT-SS-01133 | Serial number and
orientation | Visual Inspection | | | Edge to Tape
(2 places) | LAT-DS-01900 | 4 to 7 mm approx.
(.16" to .28") | Visual Inspection | | | Wrapper Mismatch (2 places) | LAT-DS-01900 | 0.7 mm approx.
(.03") maximum | Visual Inspection | | | Wrap Tightness | LAT-SS-02235 | Section 3.1.1 | Visual Inspection | | | Seam Tape Length | LAT-DS-01900 | 311 to 316 mm approx.
(12.2" to 12.4") | Visual Inspection | | # POST END-CAPPING AND FINAL INSPECTION | Description | Source | Requirement | Acceptance | QA/Date | |-------------------------------------|---------------|--|------------------------------|---------| | End Cap to End Cap
Length | LAT-DS-01900 | 330.8 to 331.6 mm
(13.024" to 13.055") | Go / No-go Gauge | | | End Cap Tape
Location (8 places) | LAT-DS-01900 | 3 to 4 mm approx.
(.12" to .16") | Visual Inspection | | | CDE Width | LAT-DS-01900 | 20.4 mm maximum
(.803" maximum) | Go / No-go Gauge | | | CDE Height | LAT-DS-01900 | 27.2 mm maximum
(1.071" maximum) | Go / No-go Gauge | | | End Cap Tape Length
(8 places) | LAT-DS-01900 | 22 to 25 mm approx.
(.87" to .98")
16 to 18 mm approx.
(.63" to .71") | Visual Inspection | | | Mass (Weight) | SAI-SPEC-1138 | 0.80 kg maximum | Measurement (recorded above) | | | Optical Test | SAI-PROC-1299 | Group # | As per test results | | | Overall completion | | All operations are complete and acceptable | | |